300KW发电机出租的详细视频已经上传,通过视频,您可以更深入地了解产品的功能和特点。
以下是:300KW发电机出租的图文介绍
柴油发电机组对环境污染的控制方法 发电机组对环境污染,包括噪音污染,尾气排放污染两大快,控制污染从这两方面入手。柴油发电机厂家康姆勒说一下 一 、噪音 柴油发电机噪声声源复杂,按照噪声辐射方式,柴油机噪声可以分为空气动力噪声和表面辐射噪声。按照产生的机理,柴油机表面辐射噪声又可以分为燃烧噪声和机械噪声。其中空气动力噪声为主要噪声源。在实际工作中,控制油机房噪音外泄是可行的,选择的方案是综合治理。若结合油机房结构的调整,治理工作将更加简单化。 柴油发电机噪音综合控制主要是根据具体的机房项目来确定相应的控制方案,这就要应考虑到机房所在区域的环境标准,机房围护结构形式及油机机型、功率、冷却风量等因素。综合控制的核心是等隔声概念,即用一封闭的围护结构将机组与外界隔离开来,减少声源对外的声辐射。为机房与外界相通而预留的通道(如冷却风扇出口、发动机排气出口、机房通风换气口等)必须设计成消声通道,其插入损失也应与围护结构的隔声量相当,只有这样做才可保证机房外的环境噪声达标。 1、进气噪声控制 一般发动机均装有空气滤清器,进气噪声即可有较大衰减,成为次要声源。而当其它声源得到进一步控制后,进气噪声有可能成为主要声源,这时需考虑采用性能良好的进气消声器,通常进气消声器要和空气滤清器结合,进行一体化设计,既能满足进气和滤清方面的要求,又可使进气噪声得到有效的控制。 2、 排气噪声控制 控制排气噪声有效的方法是加装排气消声器,实际情况往往是降噪效果不很理想。分析原因主要是消声器结构设计不甚合理以及加工工艺存在问题,后一个问题可以通过提高工艺水平加以改善;前一个问题则涉及消声器的设计思路。通常消声器设计主要凭经验,一些设计计算程序是在一些理想假设条件下进行的,而在这些假设中实际影响 的是忽略气流的存在,而且是高压、高温、高速脉动气流的存在。此种状态的气流将会影响消声器内部的声场分布、声速、声的传播规律等,特别是气流速度影响更大。 气流影响消声器性能的主要原因是发动机排气的高速脉动气流再生噪声,其次是这种气流会冲击消声器的管路、壳体、隔板等声学元件,进而激发振动辐射噪声。当消声器结构参数选择不当,或结构不合理,或加工工艺存在问题时,都会导致消声器消声性能的下降,同时气流速度过高也会加大消声器的压力损失也会造成消声性能下降。 3、发动机表面辐射噪声的控制 发动机表面辐射噪声(燃烧噪声和机械噪声)的控制要受到发动机性能方面的种种限制,从技术角度讲难度很大,且降噪量有限。实践表明,在结构上采取措施可以一定幅度地降低发动机的表面辐射噪声,从而降低整机噪声。控制的基本措施是增加结构刚度和阻尼,使得在同样的激振力作用下减少结构表面响应。与此同时,减少辐射噪声的表面面积,也是控制辐射噪声的有效措施 气排放污染, 加装尾气过滤装置,吸收分解有害物质。
几年来,承蒙社会各界人士的关心和支持,维曼机电设备(黄石市分公司)充分发挥自身优势,积j i面向 发电机出租市场,参与竞争, 取得了良好的生态效益、社会效益和经济效益,受到了社会各界的好评,有较好的认知度和美誉度。我们将再接再励,不断加强自身建设。
同步柴油发电机逆功率保护 1.何谓逆功率保护 当两台以上柴油发电机组并联运行时,若其中一台柴油发电机组的柴油机工作不正常或柴油机与发电机联轴器损坏等原因,使该机组的发电机不但不能输出有功功率,反而从供电系舯吸收功率,同步发电机变为同步电动机,即同步发电机处于逆功率状态下运行。 如果同步发电机在逆功率状态下运行,对供电系统是不利的,造成参以并联运行其他机组过载跳闸,供电中断,因此,应采取措施进行逆功率保护。 2.晶体管逆功率保护装置 晶体管逆功率保护装置电路。 由于逆功率保护是有功功率方向保护,因此,它的检测信号,应取电压、电流两方面的信号及其相位关系,并将其转换为反应有功功率的方向和大小的直流电压控制信号。 该装置逆功率保护信号是取自发电机S相的电压和电流来进行单相逆功率检测。它的电压形成回路中,电压变换器m1、m2吨的原边接成对称星形,取出电压Uso作为电压信号,并使Uso与发电机输出的相电压Uso同相位,其电流信IS号由S相的电流互感器取得,经两个单相桥式整流电路VD1、VD2整流,在电阻R3得电压U1,电阻R4得电压U2,功率检测环节是应用 值比较原理进行检测,当R1=R2时,功率检测环节输出的直流控制信号电压Umn与有功功率P成正比,并反映P的方向。在逆功率时,直流控制信号电压Umn为负值,即n点电位高于通m点电位。当逆功率达8%发电机额定功率时,三极管VT1导通,VT2截止,工作电源经电阻R15、R16对电容C进行充电,充电延时约5s,电容C充电电压UC达到稳压管W1击穿电压时,W1管导通,二极管VD3及三极管VT3导通,出口继电器d1通电动作,供电开关自动跳闸,从而达到保护的目的。
目前常用的柴油发电机电火线圈可分为哪两种形式呢 点火线圈是用来将电源的低压电转变成高压电的基本元件,它由一次绕组、二次绕组和铁芯等组成。常用的电火线圈可分为开磁路点火线圈和闭磁路点火线圈两种形式。 (1)开磁路点火线圈 开磁路点火线圈的结构:点火线圈的铁芯由若干片涂有绝缘漆的硅钢片叠成,二次绕组和一次绕组都套在柱形铁芯上。 点火线圈的二次绕组用直径为0.06~0.10m的漆包线,在绝缘纸上绕11000~23000匝;一次绕组用直径为0.5、1mm的漆包线,在二次绕组绝缘层的外侧绕240~370匝。由于一次绕组中流过的电流较大"导致其发热量也大,故绕在二次绕组之外,以利于散热。两个绕组的外面都包有绝缘纸层,在一次绕组之外还套装一个导磁钢套,以减小磁路的磁阻,胶状绝缘物或变压器油之后,用胶木盖盖好,并加以密封。 附加电阻接在两个低压接线柱和之间。在有些机型上使用的点火线圈不带附加电阻,没有接线柱,接线柱直接经点火开关接电源;还有些机型使用的点火线圈上虽然没有附加电阻,但接线柱通过一根专用的附加电阻线接电源,在接线柱上还接有一根导线,导线的另一端接在启动机的附加电阻短路接线柱上,以便在启动发动机时将附加电阻短路,改善启动时的点火性能。 (2)闭磁路点火线圈 开磁路点火线圈采用柱形铁芯,一次绕组在铁芯中产生的磁通,通过导磁钢套形成磁回路,而铁芯上部和下部的磁力线从空气中穿过,磁路的磁阻大,泄漏的磁通量多,磁路损失大,转化率低。闭磁路点火线圈,将一次绕组和二次绕组都绕在口字形或日字形铁芯上。初级绕组在铁芯中产生的磁通,通过铁芯形成闭合磁路,因此泄漏的磁通量和磁路损失大大减小,点火线圈的转换效率高。